

This document is issued within the frame and for the purpose of the MATHISIS project. This project has received funding from the
European Union’s Horizon 2020 Programme (H2020-ICT-2015) under Grant Agreement No. 687772

Managing Affective-learning THrough Intelligent
atoms and Smart InteractionS

D3.2 The MaTHiSiS Smart Learning Atoms

Workpackage WP3 – Smart Learning Atoms and Graph Tools

Editor(s): Thomas TECHENE, DXT

Dorothea TSATSOU, Anastasios DIMANIDIS, Nicholas VRETOS, CERTH

Responsible Partner: DXT

Quality Reviewers Ana Luiza PONTUAL, Ana Piñuela ATOS

Andy BURTON, NTU

Status-Version: Final v1.0

Date: Project Start Date: 1/1/2016; Duration: 36 months

Deliverable Due Date: 31/12/2017

Submission Date: 15/12/2017

EC Distribution: PU

Abstract: This document constitutes the second and final version of the Smart
Learning Atoms (SLA) report of the MaTHiSiS project. The SLA, which is
central to the approach taken in the MaTHiSiS project, is an atomic and
independent piece of knowledge or skill that will allow the users of the
MaTHiSiS system to re-use their work in other similarly structured
learning scenarios, as is often the case in modern schools or work
environments.

Keywords: Smart Learning Atom, atomicity, reuseability, individuality, non-linearity,
Open API

Related Deliverable(s) D2.2 - Full scenarios of all use cases (M9)

D2.4 - Full system architecture (M15)

Contract No.: 687772

Page 2 of 41

D3.1 The MaTHiSiS Smart Learning Atoms

D3.4 - The MaTHiSiS Learning Graphs

D3.6 - Experience Engine

D3.9 - MaTHiSiS Frontend Components

D6.2 - The MaTHiSiS Learning Graph Engine

D6.4 - Synchronous and Asynchronous collaboration among platform
agents

D7.1 - Integration Strategy and planning

D7.3 - MaTHiSiS platform, 2nd release

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 3 of 41

Document History

Version Date Change editors Changes

0.1 15/11/2017 Thomas TECHENE
(DXT)

Initial version of the document.

0.2 04/12/2017 Thomas TECHENE
(DXT)

Contribution Section 1, 3.3, 4, 5

0.3 10/12/2017 Dorothea Tsatsou,
Anastasios
DIMANIDIS, Nicholas
VRETOS (CERTH)

Contribution Section 2, 3, 6, 7

0.4 13/12/2017 Thomas TECHENE
(DXT)

Document alignment

0.5 14/12/2017 Andy Burton (NTU) Internal Review

0.6 14/12/2017 Thomas TECHENE
(DXT)

Changes after internal review

0.7 15/12/2017 Ana Luiza Pontual
(ATOS)

Internal Review

0.8 15/12/2017 Thomas TECHENE
(DXT)

Changes after internal review

0.9 15/12/2017 Ana Piñuela (ATOS) Final quality review

1.0 15/12/2017 FINAL VERSION TO BE SUBMITTED

The information and views set out in this document are those of the author(s) and do not necessarily reflect the official
opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf

may be held responsible for the use which may be made of the information contained therein.

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 4 of 41

Table of Contents

Document History ... 3

Table of Contents .. 4

List of Tables .. 5

List of Figures ... 6

List of Acronyms .. 7

Project Description .. 8

Executive Summary ... 9

1. Introduction ... 11

2. Smart Learning Atoms .. 12

2.1 Objectives and definitions ... 12

2.2 Methodology and dependencies ... 12

2.3 Smart Learning Atoms educational attributes: concrete examples 14

2.3.1 Atomicity & self-sustainability ... 14

2.3.2 Re-usability .. 15

2.3.3 Individuality ... 18

2.3.4 Non-linearity .. 18

3. Smart Learning Atom library implementation details ... 19

3.1 Functionalities ... 19

3.2 Open API .. 20

3.3 Interface with the Front-end ... 22

3.3.1 SLAs in the Learning Content Editor .. 22

4. Conclusion .. 26

5. References .. 27

6. Appendix I: SLA Data Structures .. 28

7. Appendix I: SLA lib Open API documentation .. 31

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 5 of 41

List of Tables

Table 1: Definitions, Acronyms and Abbreviations .. 7
Table 2: Learning Graph "PE_MEC_12-13" used by partners PE in assisted pilots for mainstream case children
aged 12-13 .. 16
Table 3: Learning Graph “JCYL_ASC_PMLD” used by partners JCYL in assisted pilots for learners with autism and
PMLD ... 18
Table 4: Unpersonalised SLA data structure (Collection lcsSmartLearningAtom) ... 28
Table 5: Personalised SLAI data structure (US_SmartLearningAtomInstance) ... 29
Table 6: Personalised SLAI runtime record data structure (usSmartLearningAtomInstance_rtm) 30
Table 7: SLA Open API - GET api/sla/getSLAs .. 31
Table 8: SLA Open API - GET api/sla/getSLA ... 32
Table 9: SLA Open API - GET api/sla/getLAs .. 32
Table 10: SLA Open API - GET api/sla/getSLAIs ... 33
Table 11: SLA Open API - GET api/sla/getSLAI .. 33
Table 12: SLA Open API - GET api/sla/getSLAIs/rtm ... 34
Table 13: SLA Open API - GET api/sla/getSLAI/rtm ... 35
Table 14: SLA Open API - POST api/sla/postSLA .. 35
Table 15: SLA Open API - POST api/sla/postSLAI ... 36
Table 16: SLA Open API - POST api/sla/postSLAI/rtm ... 37
Table 17: SLA Open API - POST api/sla/updateSLAIweight ... 37
Table 18: SLA Open API - PUT api/sla/putSLA ... 38
Table 19: SLA Open API - PUT api/sla/putSLAI .. 39
Table 20: SLA Open API - DELETE api/sla/deleteSLAs .. 39
Table 21: SLA Open API - DELETE api/sla/deleteSLAIs ... 39
Table 22: SLA Open API - DELETE api/sla/deleteSLAIs/rtm ... 40
Table 23: SLA Open API - DELETE api/sla/deleteSLA ... 40
Table 24: SLA Open API - DELETE api/sla/deleteSLAI .. 40
Table 25: SLA Open API - DELETE api/sla/deleteSLAI/rtm ... 41

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 6 of 41

List of Figures

Figure 1: SLAs and SLA Instances and dependencies with other MaTHiSiS collections ... 14
Figure 2: Learning Graph “PE_ASC_PMLD” used by partners PE in assisted pilots for learners with autism and
PMLD ... 15
Figure 3: The base URL and GET methods available through the SLA lib Open API .. 20
Figure 4: The DELETE, POST and PUT methods available through the SLA lib Open API 21
Figure 5: UI mock-up for the SLA Editor .. 23
Figure 6: First Prototype of the SLA Editor .. 23
Figure 7: Current state of SLA Editor ... 24

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 7 of 41

List of Acronyms

Abbreviation / acronym Description

ASC Autism Spectrum Case

CGDLC Career Guidance and Distance Learning Case

ITC Industrial Training Case

LA Learning Action

LAM Learning Action Materialization

LCE Learning Content Editor

LCM Learning Content Manager

LCS Learning Content Space

LES Learning Experience Supervisor

LG Learning Graph

LGR Learning Graph Repository

MEC Mainstream Education Case

PA Platform Agent

PMLDC Profound and Multiple Learning Disabilities Case

SLA Smart Learning Atom

SLA Smart Learning Atom Instance

UI User Interface

US User Space

Table 1: Definitions, Acronyms and Abbreviations

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 8 of 41

Project Description

The MaTHiSiS learning vision is to provide a novel advanced digital ecosystem for vocational training,
and special needs and mainstream education for individuals with an intellectual disability (ID), autism
and neuro-typical learners in school-based and adult education learning contexts. This ecosystem
consists of an integrated platform, along with a set of re-usable learning components with
capabilities for: i) adaptive learning, ii) automatic feedback, iii) automatic assessment of learners’
progress and behavioural state, iv) affective learning, and v) game-based learning.

In addition to a learning ecosystem capable of responding to a learner’s affective state, the MaTHiSiS
project will introduce a novel approach to structuring the learning goals for each learner. Learning
graphs act as a novel educational structural tool. The building materials of these graphs are drawn
from a set of Smart Learning Atoms (SLAs) and a set of specific learning goals which will constitute
the vertices of these graphs, while relations between SLAs and learning goals constitute the edges of
the graphs. SLAs are atomic and complete pieces of knowledge [1] which can be learned and
assessed in a single, short-term iteration, targeting certain problems. More than one SLA, working
together on the same graph, will enable individuals to reach their learning and training goals.
Learning goals and SLAs will be scoped in collaboration with learners themselves, teachers and
trainers in formal and non-formal education contexts (general education, vocational training, lifelong
training and specific skills learning).

MaTHiSiS is a 36 month long project co-funded by the European Commission Horizon 2020
Programme (H2020-ICT-2015), under Grant Agreement No. 687772.

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 9 of 41

Executive Summary

This deliverable constitutes the second and final version of the Smart Learning Atoms report of the
MaTHiSiS project and presents the Smart Learning Atom (SLA), one of the key concepts in MaTHiSiS.

Smart Learning Atoms (SLAs) are atomic and complete pieces of knowledge, competence and/or
skills, which can be learned and assessed in a single, short-term learning process iteration from a
learner. SLAs essentially comprise primordial learning goals, constituents of more advanced learning
goals, which cannot be further reduced to more primitive notions. In a nutshell, they consist of the
simplest of concepts pertaining to what-to-learn during an educational process.

SLAs comprise the basis of the novel learning approach of MaTHiSiS. Their standalone and self-
contained nature allows learning scenario designers to define re-usable, versatile learning entities,
applicable to various learning subjects, which can contribute to more complex/compound learning
goals. SLAs are the constructive elements of Learning Graphs (cf. Deliverable 3.4 The MaTHiSiS
Learning Graphs), where already existing or new SLAs are connected to composite learning goals,
thus constructing a relational network of the learning scenario objectives.

In this relational network, the relations are directed, denoting that one or more network nodes
(nodes standing for knowledge, skills, competences) contribute to the apprehension of other nodes.
Since SLAs represent atomic and standalone competences, they are never related to each other in
any Learning Graph structure, since no further divisible units can contribute to an SLA. They are
rather always contributing to learning goals.

Besides atomicity, another important attribute of Smart Learning Atoms is re-usability. In this sense,
Learning Experience enablers (i.e. teachers/caregivers/trainers) can engineer their desired SLAs from
scratch, but they can also draw from a library of pre-existing SLAs maintained in the MaTHiSiS
platform, and enrich them with additional custom attributes.

Furthermore, breaking down learning objectives to fundamental sub-components (SLAs) allows for
non-linear and highly adaptive discretisation of the learning process, which does not have to follow
a rigid collective and cascading style anymore, but rather adopts a non-linear relational operational
scheme, i.e. the organization of the Learning Experience in Learning Graphs. More specifically, the
hierarchical composition of the learning objectives from atomic (SLAs) to composite (learning goals)
units enables the learning experience to alternate its focus on mastering each atomic learning
content constituent (i.e. the SLAs), which in turn implies mastering the composite learning goals.

Non-linear alternation in training SLAs during the learning process will ensure a highly personalized
adaptation scheme, based on the learner’s particular apprehension abilities, learning style and
uptake over the knowledge/skills to acquire, which at the same time ensures the maintenance of the
engagement of the learners in the learning process.

This learner-centric scheme is also supported by the ability of the MaTHiSiS Platform Agents (PAs),
acting as learning process facilitators, to deploy precise learning activities in each SLA for each
individual learner taking part in a learning scenario, in each iteration of the learning process. To this
end, each SLA is attached to one or more generic Learning Actions (LAs), which the MaTHiSiS system
can materialise in different ways on the different PAs (cf. D3.6 Experience Engine[2]).

The SLA lib and its accompanying Open API is the library responsible for the creation, manipulation
and deletion of the three SLA structure manifestations (the SLA, SLAI and runtime SLAI). This
component is namely the SLA lib and its accompanying Open API. The SLA lib has only been slightly
modified since the first iteration of this document, but will be described here for self-sustainability
purposes of the document, while the Open API has been enhanced with service filters and
improvements.

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 10 of 41

The SLAs are key in several places of the MaTHiSiS Front-end:

• In the Learning Content Editor (LCE), all the SLAs created by MaTHiSiS users, stored in the
Learning Graphs Repository (LGR), can be browsed, viewed and edited.

• The LCE is where new SLAs can be created and then published, and also existing ones can be
edited by tutors.

• In the LCE, SLAs can also be used in Learning Graphs being created by tutors.
• Finally, the Learning Experience Supervisor allows both tutors and learners to examine the

relevant SLAs and the graphs to which they belongs involved in their Learning Experience.

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 11 of 41

1. Introduction
D3.2 - The MaTHiSiS Smart Learning Atoms is the second and final report of the Smart Learning
Atoms. This concept is central to the approach taken in the MaTHiSiS project and one of the
outcomes of work package WP3 - Smart Learning Atoms and Graph Tools and more specifically T3.1 -
Educational Content development (Smart Learning Atoms).

This document is organized as follows:

• Section 1 introduces the purpose and structure of this deliverable.
• Section 2 describes the Smart Learning Atoms and how they are integrated in the MaTHiSiS

platform. Furthermore examples of Smart Learning Atoms are provided to understand the
rationale behind this concept.

• Section 3 goes through the particulars implementations of the library that is responsible for
the creation, manipulation and deletion of the three SLA structure manifestations (the SLA,
SLAI and runtime SLAI) and describes the interface of the SLA in the MaTHiSiS front end.

• Section 4 presents the conclusions of the document.

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 12 of 41

2. Smart Learning Atoms
This section describes the MaTHiSiS core educational process innovation, namely the Smart Learning
Atoms (SLAs).

2.1 Objectives and definitions
Smart Learning Atoms (SLAs) are atomic and complete pieces of knowledge, competence and/or
skills, which can be learned and assessed in a single, short-term learning process iteration from a
learner. SLAs essentially comprise primordial learning goals, constituents of more advanced learning
goals, which cannot be further reduced to more primitive notions. In a nutshell, they consist of the
simplest of concepts pertaining to what-to-learn during an educational process.

SLAs comprise the basis of the novel learning approach of MaTHiSiS. Their standalone and self-
contained nature allows learning scenario designers to define re-usable, versatile learning entities,
applicable to various learning subjects, which can contribute to more complex/compound learning
goals. SLAs are the constructive elements of Learning Graphs (cf. Deliverable 3.4 The MaTHiSiS
Learning Graphs), where already existing or new SLAs are connected to composite learning goals,
thus constructing a relational network of the learning scenario objectives.

In this relational network, the relations are directed, denoting that one or more network nodes
(nodes standing for knowledge, skills, competences) contribute to the apprehension of other nodes.
Since SLAs represent atomic and standalone competences, they are never related to each other in
any Learning Graph structure, since no further divisible units can contribute to an SLA. They are
rather always contributing to learning goals.

Besides atomicity, another important attribute of Smart Learning Atoms is re-usability. In this sense,
Learning Experience enablers (i.e. teachers/caregivers/trainers) can engineer their desired SLAs from
scratch, but they can also draw from a library of pre-existing SLAs maintained in the MaTHiSiS
platform, and enrich them with additional custom attributes.

Furthermore, breaking down learning objectives to fundamental sub-components (SLAs) allows for
non-linear and highly adaptive discretisation of the learning process, which does not have to follow
a rigid collective and cascading style anymore, but rather adopts a non-linear relational operational
scheme, i.e. the organization of the Learning Experience in Learning Graphs. More specifically, the
hierarchical composition of the learning objectives from atomic (SLAs) to composite (learning goals)
units enables the learning experience to alternate its focus on mastering each atomic learning
content constituent (i.e. the SLAs), which in turn implies mastering the composite learning goals.

Non-linear alternation in training SLAs during the learning process will ensure a highly personalized
adaptation scheme, based on the learner’s particular apprehension abilities, learning style and
uptake over the knowledge/skills to acquire, which at the same time ensures the maintenance of the
engagement of the learners in the learning process.

This learner-centric scheme is also supported by the ability of the MaTHiSiS Platform Agents (PAs),
acting as learning process facilitators, to deploy precise learning activities in each SLA for each
individual learner taking part in a learning scenario, in each iteration of the learning process. To this
end, each SLA is attached to one or more generic Learning Actions (LAs), which the MaTHiSiS system
can materialise in different ways on the different PAs (cf. D3.6 Experience Engine[2]).

2.2 Methodology and dependencies
In order to facilitate the self-contained nature of Smart Learning Atoms and at the same time their
adaptability to different learner specifications, SLAs will take up two forms in the MaTHiSiS learning
setting.

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 13 of 41

1. Unpersonalised, core SLAs are maintained independently of Learning Graphs (LG) that they
might take part in. This allows SLAs to be retrievable and re-usable in different learning scenarios
(outlined by Learning Graphs). The SLA structure comprises of the universal properties of the
particular competences/skills/knowledge pieces they entail. This pertains to a unique identifier in
the MaTHiSiS database, a short name and a more detailed description of what each SLA is about,
along with a reference to their original creator or last user having modified them and
accompanying generation and modification dates. Lastly, they include a reference to the generic,
PA-agnostic Learning Actions that may be deployed during the learning process to actively train
the encapsulated competences/skills/knowledge that the SLAs represent. These structures reside
on the MaTHiSiS Learning Content Space (LCS), as detailed in Deliverable D7.3 MaTHiSiS
platform, 2nd release [5].

2. Personalised SLA instances (SLAIs) are created for each learner, upon the initiation of any
learning experience. SLA instances are strictly personal, reflecting the uptake of a learner over a
particular competence, piece of knowledge, or skill. The instances incorporate a reference to
their corresponding core unpersonalised SLA counterparts and further bear a scalar weight in [0,
1], which indicates the learner’s knowledge/skill/competence acquisition progress. Their
structure is similar to the unpersonalised SLAs’ one, with the difference that instead of a
reference to the creator, they refer to the individual learner and with the addition of the
competence weight described previously. SLA instances are again maintained independently
from their connected learning scenarios (Learning Graphs), and therefore progress over them will
affect any running or future scenarios (Learning Graphs), that the learner might be involved in,
which contain the particular SLAI. SLAIs reside on the MaTHiSiS User Space (US), detailed in
Deliverable D7.3 MaTHiSiS platform, 2nd release [5].

3. For learning analytics purposes, a historical record of runtime SLA instances per learner is
maintained in the MaTHiSiS DB. While long-term personalised SLA instances always reflect the
last state of each SLA instance per user, learning analytics require analysing the fluctuations of
SLA weights across the course of a learner’s experience or across different learning experiences
that involve this competence. To this end, a historical record of runtime (denoted as ‘SLAI_rtm’)
instances of SLAs is maintained, bearing a connection to their long-term (last state) SLA instance
counterpart for each learner, along with the reference to the particular session that the SLAI was
modified in during runtime and the type of process that created them (e.g. creation,
personalization, adaptation, etc.). These structures also reside on the MaTHiSiS Cloud Learner
Space (CLS).

Evidently, SLAs’ most prominent dependency is the Learning Graphs (LGs). Although SLAs can be
maintained individually, they cannot be trained unless they take part in at least one concrete
learning scenario (which is fulfilled by a LG). LG structures contain a reference to each SLA structure
they contain, following the same structural logic as SLAs. I.e. core unpersonalised LGs refer to core
unpersonalised SLAs, personal LG instances refer to the corresponding personal SLA and runtime LG
instances refer to their respective runtime SLA instances for the particular session.

As mentioned previously, another fundamental dependency of the SLAs, limited to the
unpersonalised structures, is the connection to specific, PA-agnostic Learning Actions (LAs). For a SLA
to be attained by any learner, it needs to have at least one concrete activity (LA) attached to it, which
can train/teach/reinforce the particular SLA on MaTHiSiS PAs. As detailed in Deliverable 3.6
Experience Engine [2], LAs are conceptual and PA-agnostic activities, but they are materialized
practically by suitable Learning Materials on each specific Platform Agent.

Figure 1 graphically illustrates the interdependencies pertaining to SLAs, based on the deployment of
the MaTHiSiS database schema. The collections that the SLAs are related to are portrayed as empty
placeholders for visual simplification purposes. This schema remains stable since the first version of
this document.

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 14 of 41

Figure 1: SLAs and SLA Instances and dependencies with other MaTHiSiS collections

2.3 Smart Learning Atoms educational attributes: concrete examples
The following examples outline the core attributes that pertain to the Smart Learning Atoms, as it
emerged in the MaTHiSiS assisted pilots.

2.3.1 Atomicity & self-sustainability

Atomicity and self-sustainability refer to the SLAs inherent quality of being standalone and self-
sufficient in terms of the knowledge/skills/competences they represent. This is apparent in (a) their
indivisible character in learning scenarios, as represented in LGs where SLAs contribute to compose
learning goals, but nothing contributes to SLA and (b) their primitiveness, expressed implicitly by
their capacity to contribute to more than one learning goals. Figure 2 exemplifies this fact in a LG
used by one of the MaTHiSiS partners (ISTITUTO COMPRENSIVO STATALE B. LORENZI FUMANE VR ,
Italy) for autistic children aged 8-11 years old. All SLAs (in orange) are independent of each other and
nothing contributes to them, while goals are commonly contributed to and may contribute to other
goals (a), and SLA Sequence Reproduction in particular contributes to two goals: Sequencing and
Attention Skills (b). Note Sequence Reproduction that participates in the two goals with a different
contribution gravity, defined by the edge weight.

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 15 of 41

Figure 2: Learning Graph “PE_ASC_PMLD” used by partners PE in assisted pilots for learners with autism and

PMLD

2.3.2 Re-usability

Re-usability refers to the SLAs’ capacity to be re-used in different learning scenarios (organised in
LGs) and be trained in any scenario that uses them. During assisted pilots, 16 SLAs were re-used in 2
to 9 LGs. Table 2 and Table 3 represent the components used in two of the LGs used in pilots, with
the shared SLAs denoted in column “Same as”. In the LG “PE_MEC_12-13”, two out of the total three
SLAs are reused in one to eight more LGs during assisted pilots, while in LG “JCYL_ASC_PMLD” all
seven SLAs of the LG are reused in one to eight more LGs.

Learning Goal

Weight
(0 to
1.0)

Smart
Learning
Atom Learning Action Same as

Attention skills 0.5 Sequence
reproduction

Reproduce a sequence of
pictures / sounds

SLA "Sequence
reproduction"

in LG(s)

PE_ASC_PMLD

Social skills

0.5
Basic
emotion
identification

Classify emotions

0.8 Emotion
recognition

Identify emotional facial
expressions

SLA: "Emotion
Recognition"

in LG(s)

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 16 of 41

JCYL_ASC_PMLD;

JCYL_ME_4-6;
JCYL_ME_9-12;
PE_ASC_PMLD;

PE_ME_6-9;
PE_AS_6;
FMD_LCS

FMD_ASC_15-20

Demonstrate
understanding of
different emotions

Table 2: Learning Graph "PE_MEC_12-13" used by partners PE in assisted pilots for mainstream case children
aged 12-13

Learning Goal
Weight

(0 to
1.0)

Smart
Learning
Atom Learning Action Same as

Social skills 0.8 Emotion
recognition

Identify emotional facial
expressions

SLA: "Emotion
Recognition"

in LG(s)

JCYL_ME_9-12;
JCYL_ME_4-6;

PE_ASC_PMLD;
PE_ME_6-9;

PE_AS_6;
PE_ME_12-13;

FMD_LCS
FMD_ASC_15-20

Demonstrate
understanding of
different emotions

Navigation 0.9 Left and right
identification

Identify left and right
(own/object)

SLA: "Left and right
identification"

in LG(s)

UoN_ASD_PMLD

Recognise left and right
direction

Turn left and right

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 17 of 41

0.7 Area
recognition

Match name or symbol
to different rooms

SLA: "Area
recognition"

in LG(s)

UoN_ASD_PMLD

0.8
Targeted
location
navigation

Walk/navigate to find
location

SLA: "Targeted
location

navigation"

in LG(s)

UoN_ASD_PMLD

Sequencing

0.9 Sorting

Sort objects into right
order

SLA: "Sorting"

in LG(s)

UoN_ASD_PMLD;
PE_ASC_PMLD Sort ascending /

descending on one
dimension (e.g. height,
number in group)

0.8 Order of
events

Sort pictures into logical
order e.g. child waking
up, dressing, eating
breakfast, leaving house.
Identify incorrect
sequences

SLA: "Order of
events"

in LG(s)

UoN_ASD_PMLD

Sort words in sentence
into logical order.
Identify incorrect order.

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 18 of 41

Vocabulary

0.8

Object
recognition

(Correctly) point to
picture of object named
by tutor, being given an
increasing number of
objects to choose

SLA: "Objecr
Recognition"

in LG(s)

UoN_ASD_PMLD;

Match written name to
picture being given an
increasing number of
objects to choose from

Fish or pairs

0.5 Area
recognition

SLA shared with "Navigation", but with a
smaller relation weight to this goal. What this
connection means is that when this SLA is
trained, it will mostly train Navigation, but it
will "rub off" a bit for Vocabulary as well.

Table 3: Learning Graph “JCYL_ASC_PMLD” used by partners JCYL in assisted pilots for learners with autism
and PMLD

2.3.3 Individuality

Individuality refers to the capacity of the SLAs to be instantiated to strictly personal structures (Smart
Learning Atom Instances) that carry each learner’s personal level of achievement in the specific piece
of knowledge/skill/competence they represent.

For instance, the SLA Emotion Recognition, which was widely used in the assisted pilot, as it was
reused in nine Learning Graphs (cf. the previous section), was instantiated in 142 personal SLAIs for
different learners of the platform. An anonymous learner of the Spanish pilot, pulled randomly from
the MaTHiSiS DB based on correlation with their learning environment, worked on nine different
SLAs, contained in two different LGs, as identified through the learner’s personal SLAIs stored in the
database. In total, around 420 SLAIs were created for all learners that participated in the assisted
pilots.

2.3.4 Non-linearity

Non-linearity pertains to the ability of the SLAs to be trained in no particular order but based solely
on the individual performance and affect state of the learners during the execution of a learning
experience. This will be further detailed in Deliverable D3.4[10], as it pertains prominently to the
relational structure of the Learning Graphs that enable this capacity to the SLAs.

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 19 of 41

3. Smart Learning Atom library implementation details
This section goes through the particulars implementations of the library that is responsible for the
creation, manipulation and deletion of the three SLA structure manifestations (the SLA, SLAI and
runtime SLAI), as described in Section 2.2. This component is namely the SLA lib and its
accompanying Open API. The library has only been slightly modified since the first iteration of this
document, but will be described here for self-sustainability purposes of the document, while the
Open API has been enhanced with service filters and improvements. The details of the SLA, SLAI and
runtime SLAI data structures are described in Appendix I: SLA Data Structures.

3.1 Functionalities
The SLA library incorporates all the methods and functionalities required to create, access and
modify the SLA, SLAI and runtime SLAI data structures. In this library, long-term SLAI structures and
runtime snapshots of SLAIs are treated as the same structure, applicable to different serialisation on
the MaTHiSiS database through the SLA lib Open API (detailed in Section 3.2). It is implemented as a
Java library, which is embedded to the Web Service that implements the Open API. More specifically,
the library offers functionalities to:

• Create an unpersonalised SLA, based on an exposed Java method that receives as input the
mandatory fields of the data structure (data structure as per Section 6).

• Create an unpersonalised SLA, based on a given JSON input of a serialised SLA (data structure
as per Section 5).

• Create a personal SLA instance, based on an exposed Java method that receives as input the
mandatory fields of the data structure (data structure as per Section 6).

• Create a personal SLA instance, based on a given JSON input of a serialised SLAI (data
structure as per Section 6) .

• For each non-mandatory field missing from the input (parameters or JSON structure),
provide default values to produce a complete data structure.

o In the case of date/time fields, the current system date and time are set, unless
explicitly stated otherwise.

o In the case of SLAIs, initial default weight (0.3) is set in the very first instantiation of
an SLA to a personal SLAI, unless explicitly stated otherwise.

• Retrieve and set (update) different fields of the structures.
o For all update operations, the ‘last modified’ field is automatically updated to the

current system date and time, unless this field is explicitly declared in the input
(parameters or JSON).

• For facilitating the personalisation and adaptation process, a direct functionality to update
SLAI weights is exposed, which allows to set new SLAI weights without having to explicitly
retrieve and modify the entire SLAI structure.

• Similarly, for facilitating the SLA editing process, a direct functionality to insert and remove
learning actions from SLAs is exposed, without having to explicitly retrieve and pass the
entire LA structure.

• Evaluate validity of SLA, SLAI and runtime SLAI structures as per the mandatory fields.
• Create JSON serialisations for each of the supported data structures (SLA, SLAI, runtime SLAI)

to be inserted to the MaTHiSiS DB through the SLA lib Open API.

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 20 of 41

3.2 Open API
The JAX-RS1 Java API for RESTful Web Services was used to create a Web Service, exposing the
functionalities of the SLA lib according to the Representational State Transfer (REST) architectural
pattern. The API is also responsible for serialising, retrieving and deleting SLA, SLAI and runtime SLAI
entries to and from the MaTHiSiS database. While SLA lib is in charge of processing (access, creation,
update) of SLA and SLAI structures, the Open API is responsible of receiving and transmitting the data
to the callers that wish to access the structures in the DB and the libraries’ functionalities.

Access to the SLA lib Open API is available through the central <MaTHiSiS base URL>/api/sla/ base
URL. MaTHiSiS components that consume SLA lib functionalities through the Open API are able to get
data from appropriate HTTP connections (bound to specific URLs). The details of the functionalities
behind the REST calls available through the SLA lib Open API, are listed below in Figure 3 and Figure 4
are described in Appendix I: SLA lib Open API documentation.

Figure 3: The base URL and GET methods available through the SLA lib Open API

1 https://jax-rs-spec.java.net/

https://jax-rs-spec.java.net/

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 21 of 41

Figure 4: The DELETE, POST and PUT methods available through the SLA lib Open API

In short, the SLA lib Open API exposes services to:

• Retrieve all SLAs, SLAIs or runtime SLAIs from the MaTHiSiS database. For SLAIs and runtime
SLAIs, filters to retrieve instances specific to a particular core unpersonalised SLA or a particular
user are available.

• Retrieve a specific SLA, SLAI or runtime SLAI from the MaTHiSiS database.
• Retrieve all LAs attached to a particular SLA. This is an assistive functionality for back-end

components, through which the LAs can be retrieved directly, without having to access the entire
SLA structure and traverse it to retrieve attached LAs.

• Delete all SLAs, SLAIs or runtime SLAIs from the MaTHiSiS database. For SLAIs and runtime SLAIs,
filters to delete instances specific to a particular core unpersonalised SLA or a particular user are
available.

• Delete a specific SLA, SLAI or runtime SLAI from the MaTHiSiS database.
• Post (insert) a SLA, SLAI or runtime SLAI to the MaTHiSiS database. These functionalities check if

the particular structure to be posted already exists in the DB and reject the insertion if so. They
also implement structure validation, to ensure that the structure to be inserted complies with
the defined SLA, SLAI, runtime SLAI structure models, per case.

• Update a SLAI’s weight. This is an assistive functionality, used in the back-end by the DSS and the
LGE (cf. Deliverables D6.2 and D6.4 [7][8]), where the SLAI weight can be updated directly,

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 22 of 41

without having to access the entire SLAI structure, traverse and alter it outside of the control of
the SLA lib. This functionality also evokes the insertion of a runtime SLAI entry in DB each time it
is called.

• Put (insert or update) a SLA, SLAI or runtime SLAI to the MaTHiSiS database. These functionalities
implement structure validation, to ensure that the structure to be inserted/updated complies
with the defined SLA, SLAI, runtime SLAI structure models, per case.

3.3 Interface with the Front-end
Smart Learning Atoms are core elements in the pedagogical methodology introduced in MaTHiSiS,
and they are key in several places of the MaTHiSiS Front-end:

• In the Learning Content Editor (LCE), all the SLAs created by MaTHiSiS users, stored in the
Learning Graphs Repository (LGR), can be browsed, viewed and edited.

• The LCE is where new SLAs can be created and then published, and also existing ones can be
edited by tutors.

• In the LCE, SLAs can also be used in Learning Graphs being created by tutors.
• Finally, the Learning Experience Supervisor allows both tutors and learners to examine the

relevant SLAs and the graphs to which they belongs involved in their Learning Experience.

3.3.1 SLAs in the Learning Content Editor

The main functionality of the LCE is to give tutors the tools to create and edit MaTHiSiS-related
content. The LCE development has been focused on this core functionality. SLAs management
through LCE can be broken down in four main objectives:

• Provide a tool for creating and editing SLAs;
• Provide a tool for adding and connecting SLAs in a Learning Graph;
• Ensure the compatibility of these tools with the defined SLA data model;
• Establish the communication (read/write) in the LCE using the LG lib Open API for SLAs.

Multiple users can take part during the content creation process in MaTHiSiS, working on the
different building blocks (LG, SLA, LA, LAM and LM). Manipulating all these concepts in a single,
unified edition tool would potentially lead to a difficult and non user-friendly tool. An early decision
in the project was taken to create separate and independent tools for each, with the remaining
needs of interconnection between these editing tools. Furthermore, quick navigation between the
tools is mandatory, making the work on different elements during the same content creation process
more pleasant.

Based on this reflexion, two additional goals were thus added for the LCE:

• Editing tools must be simple and focused on a single concept;
• Navigation between the different editing tools must be quick and easy, but not required at all

times to create content.

A description of the entire Learning Content Editor is provided in the D3.9 – MaTHiSiS Frontend
Components [9].

In the early period of the project, UI mock-ups for the different LCE tools were created to reach these
goals, in order to further refine the list of functionalities required. The approach taken for UI design
was to work on mock-ups for the entire tool-set(LG Editor, SLA Editor, LA Editor, LAM Editor) at the
same time to ensure that they all have the same look and feel and that they are inline in terms of
functionalities implemented in the different tools.

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 23 of 41

3.3.1.1 SLA Editor

The SLA editor has evolved over the time. Some screenshot below illustrate the different steps the
editor has been through.

Figure 5 shows the UI mock-up for the SLA Editor tool designed in the 1st year:

Figure 5: UI mock-up for the SLA Editor

Figure 6 shows the first prototype of the SLA Editor developed during the 1st year:

Figure 6: First Prototype of the SLA Editor

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 24 of 41

Figure 7 shows the current status of the SLA Editor after the 2nd year.

Figure 7: Current state of SLA Editor

The SLA content is represented by a list of Learning Actions, in no specific order (although the list can
be rearranged at will for clarity). Each Learning Action can be submitted to editing, which opens up a
LA Editor in a new tab. More details on LA Editor can be found in D3.6 – Experience Engine M24 [2].

The user can quickly create new, empty Learning Actions with the Create functionality available
through a right click in the working zone. An empty Learning Action will need further editing before it
can be published on the MaTHiSiS cloud, but letting the user completely define his SLA in just one
time without having to constantly swap to the LA Editor was an important point considered in this
design decision. Once the SLA is completed, even with empty Learning Actions, the user can publish
his SLA to the cloud with the Save to the cloud option available in the Toolbar.

Publishing an SLA to the MaTHiSiS cloud is done using the SLA OpenAPI method POST at the address
api/sla/postSLA. This method is described in the SLA OpenAPI implementation details, present in this
document at section 10.

The Browse panel on the left allows the user to view and access the Learning Actions stored on the
MaTHiSiS cloud, and to add existing Learning Actions (made by him/her or by another MaTHiSiS user)
to his/her SLA, exploiting the reusability concept.

Learning Actions are retrieved in the Browse panel using the LA Open API method GET at the adress
/api/LA/LearningActions. This method is described in details in the D3.6 - Experience Engine M24[2].

Apart from saving to and downloading from the Cloud, the toolbar offers an option to save the SLA
under edit to the disk as local copy, which can be useful in case the user loses the connection with
the MaTHiSiS cloud during a content creation session. In the same way, it is possible to open an
existing SLA from a local copy.

3.3.1.2 LG Editor

The Learning Content Editor also features a LG Editor tool, described in detail in D3.4 - The MaTHiSiS
Learning Graphs M24[10]. The aim of this tool is to build Learning Graphs with SLAs that can be
added as nodes, and connected to Learning Goals with weighted edges describing the SLAs
importance towards the Learning Goals.

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 25 of 41

In order to fulfill the goal of the LCE, the following functionalities have been put into place in the LG
Editor:

• Create new, SLAs placeholders directly in the LG Editor without having to create them
beforehand in a SLA Editor. This allows the user to stay focused on the graph s/he is currently
editing while still being able to create all the content s/he needs.

• Open a SLA Editor to edit an existing SLA in a Learning Graph. This ensures that the
navigation between the different editor tools is quick and easy, while the tools still remain
independent from each other.

• Have at disposal a list of existing SLAs that can be reused in newer Learning Graphs.

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 26 of 41

4. Conclusion
This document describes the concept of the Smart Learning Atom (SLA), which is central to the
approach taken in the MaTHiSiS project. It allows the description of an atomic and independent piece
of knowledge or skill. This atomic and independent piece of knowledge will allow the users of the
MaTHiSiS system to re-use their work in other similarly structured learning scenarios, as is often the
case in modern schools or work environments.

In addition, this document gives details on the implementation of this concept in the second release
of the MaTHiSiS platform. The implementation has evolved during the first two years of project,
based on the feedback of end users gathered the during Driver and Assisted Pilot phases. However,
implementation based on the feedback took the initial architecture into account and the approach
taken has remained the same. The front-end has, as would be expected, evolved throughout the
project, following the end-users requirements, but also with the additional insight concerning
concrete uses in classes or during professional training with real people involved in education and
learning during the two Pilots phases (“driver” and “assisted”).

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 27 of 41

5. References
[1] Nottingham Trent University (ed.): D.2.2 Full Scenarios for all Use Cases. Deliverable of the

MATHISIS project, 2016.
[2] DIGINEXT (ed.): D3.6 Experience Engine M24. Deliverable of the MaTHiSiS project, 2017.
[3] ATOS (ed.): D7.1 Integration Strategy and planning. Deliverable of the MaTHiSiS project, 2016.
[4] DIGINEXT (ed.): D7.2 MaTHiSiS platform, 1st release. Deliverable of the MaTHiSiS project, 2017.
[5] ATOS (ed.): D7.3 MaTHiSiS platform, 2nd release. Deliverable of the MaTHiSiS project, 2017.
[6] MaTHiSiS Description of Action, 2016.
[7] UM (ed.): D6.2 The MaTHiSiS Learning Graph Engine M24. Deliverable of the MaTHiSiS project,

2017.
[8] UM (ed.): D6.4 Synchronous and Asynchronous collaboration among platform agents M24.

Deliverable of the MaTHiSiS project, 2017.
[9] DIGINEXT (ed.): D3.9 MaTHiSiS Frontend Components M24. Deliverable of the MaTHiSiS project,

2017.
[10] Centre For Research and Technology Hellas (ed.): D3.4 The MaTHiSiS Learning Graphs M24.

Deliverable of the MaTHiSiS project, 2017.

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 28 of 41

6. Appendix I: SLA Data Structures
The structures of the unpersonalised SLAs, personalised SLA instances and runtime instances have
remained mostly stable since the first iteration of this document, with minor updates pertaining to
values types, and are detailed in the tables below. They are also presented, in context with the rest
of the platform’s structures, in Deliverable D7.3. As explained in Section 2, the unpersonalised SLAs
reside on the Learning Content Space (LCS) and the personalised instances (hereafter referred to
SLAIs) on the User Space (US). Fields marked with (*) constitute obligatory components of the
structures.

lcsSmartLearningAtom
Key Description Value Related to

_id* The unique identifier of the SLA ObjectId -

SLA_NAME* The label of the SLA String -

SLA_DESCR Details about what this SLA is about String -

CREATOR_ID* The unique identifier of the user (tutor)
that created this SLA

ObjectId Collection
users: _id
Only for "role"
: "Tutor"

CREATED The date and time when this SLA was first
created

ISODate -

LAST_
MODIFIED

The date and time when this SLA was last
modified

ISODate -

LEARNING_
ACTIONS*

The list of PA-agnostic, generic LAs that are
attached to (actuate) this SLA. There
should be at least one LA attached to each
SLA. This list is just a pointer to the full
structure of each Learning Action.

Array -

LA_NAME* The unique name of the Learning Action String -

_id* (Within the LA list:) the unique DB
identifier of the Learning Action

ObjectId (Learning
Action) _id

RELATION_DE
GREE

(For future releases).
A weight in [0, 1] that denotes the
relevance of the LA to the particular SLA.
Default: 1.0 – in the first release

String -

Table 4: Unpersonalised SLA data structure (Collection lcsSmartLearningAtom)

usSmartLearningAtomInstance

Key Description Value Type Related to

_id* The unique DB identifier of the SLA
instance

ObjectId (US_SLAI_rtm)
SLAI_id

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 29 of 41

SLA_NAME* The unique name of the SLA String -

SLA_DESCR Details about the SLA String -

SLA_ID* The unique identifier of the corresponding
unpersonalised SLA

ObjectId (LCS_SLA) _id

LEARNER_ID* The unique identifier of the user (learner)
that this SLAI belongs to

ObjectId (Users) _id,
for role:
learner

SLAI_WEIGHT A weight in [0, 1] that denotes the
achievement level of the particular learner
concerning this knowledge/skill/
competence (SLA).
Initial (no previous info available): 0.3

String -

CREATED The date and time when this SLA was first
created

ISODate -

LAST_
MODIFIED

The date and time when this SLA was last
modified

ISODate -

Table 5: Personalised SLAI data structure (US_SmartLearningAtomInstance)

usSmartLearningAtomInstance_rtm

Key Description Value Type Related to

_id* The unique DB identifier of the SLA
instance

ObjectId -

SLA_NAME* The unique name of the SLA String -

SLA_DESCR Details about SLA String -

TYPE Type of runtime instance String -

SLA_ID* The unique identifier of the corresponding
unpersonalised SLA

ObjectId (LCS_SLA) _id

SLAI_ID The unique identifier of the corresponding
(long-term) personal SLAI

ObjectId (US_SLAI_rtm)
SLAI_id

LEARNER_ID* The unique identifier of the user (learner)
that this SLAI belongs to

ObjectId (Users) _id,
for role:
learner

SLAI_WEIGHT A weight in [0, 1] that denotes the
achievement level of the particular learner
concerning this knowledge/skill/
competence (SLA).
Initial (no previous info available): 0.3

String -

SESSION_ID The unique identifier of the learning
session when this SLAI’s weight was
modified during runtime

ObjectId Collection
LearningSessio
ns: _id,

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 30 of 41

CREATED The date and time when this SLAI was first
created

ISODate -

LAST_
MODIFIED

The date and time when this runtime SLAI
was last modified. Always same as
CREATED, maintain only for uniformity

ISODate -

Table 6: Personalised SLAI runtime record data structure (usSmartLearningAtomInstance_rtm)

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 31 of 41

7. Appendix I: SLA lib Open API documentation
The tables below detail the functionalities of the REST calls available through the SLA lib Open API.
Parameters marked with (*) are mandatory. All ids are ObjectIds, an inherent Mongo value type used
to identify DB entries and all dates follow Mongo’s ISODate value type.

URL pattern GET api/sla/getSLAs

Method GET

Content
type

Application/JSON

Description Return the list of all SLAs in the MaTHiSiS repository

Responses HTTP 200 status code if successful

 HTTP 500 if the JSON structure of the list failed to be constructed

Parameters Name URL pattern Success Response Model
- - {

 "slas": [
 {
 "sla_id": {sla_id},
 "sla_name": {sla_name},
 },
 ...
]
}

Table 7: SLA Open API - GET api/sla/getSLAs

URL pattern GET api/sla/getSLA

Method GET

Content
type

Application/JSON

Description Return an unpersonalised SLA for a given id (and optionally, name as cross-reference)

Responses HTTP 200 status code if successful

 HTTP 400 status code if no SLA ID is provided.
 HTTP 404 status code if no SLA exists with this id OR an empty output had yielded.
 HTTP 500 if the JSON structure of the list failed to be constructed

Parameters Name URL pattern Success Response Model

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 32 of 41

id*
label

?id={sla_id }
& label={sla_name}

{
 "_id": {SLA_id},
 "SLA_DESCR" : "{SLA description}",
 "SLA_NAME" : "{SLA_name}",
 "LEARNING_ACTIONS" : [
 {
 "LA_NAME" : "{LA_name}",
 "_id" : {LA_id},
 "RELATION_DEGREE" : "1.0"
 },
 ….
],
 "LAST_MODIFIED" : {isodate}
 "CREATED" : {isodate}
 "CREATOR_ID" : {tutor_id})
}

Table 8: SLA Open API - GET api/sla/getSLA

URL pattern GET api/sla/getLAs

Method GET

Content
type

Application/JSON

Description Return the list of learning actions attached to the specific unpersonalised SLA

Responses HTTP 200 status code if successful

 HTTP 400 status code if no SLA ID is provided.

 HTTP 404 status code if no SLA exists with this id OR an empty output had yielded.

 HTTP 500 if the JSON structure of the list failed to be constructed

Parameters Name URL pattern Success Response Model
id* ?id={sla_id } {

 "LEARNING_ACTIONS" : [
 {
 "LA_NAME" : "{LA_name}",
 "_id" : {LA_id},
 "RELATION_DEGREE" : "1.0"
 },
 ….
],
}

Table 9: SLA Open API - GET api/sla/getLAs

URL pattern GET api/sla/getSLAIs

Method GET

Content
type

Application/JSON

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 33 of 41

Description Return the list of all personal SLA instances in the MaTHiSiS repository. If a learner id
is defined, return the list of all SLAIs that this learner works on. If a SLA id is defined,
return the list of all SLAIs that are instantiated from this SLA.

Responses HTTP 200 status code if successful

 HTTP 500 if the JSON structure of the list failed to be constructed

Parameters Name URL pattern Success Response Model
uid
slaid

?uid={learner_id}
&slaid={sla_id}

{
 "learner_id" : {learner_id},
 "slas": [
 {
 "slai_id": {slai_id},
 "sla_id": {sla_id},
 "sla_name": {sla_name},
 },
 ...
]
}

Table 10: SLA Open API - GET api/sla/getSLAIs

URL pattern GET api/sla/getSLAI

Method GET

Content
type

Application/JSON

Description Return a personalised SLAI for a particular learner, given the SLAI id (and optionally,
name as cross-reference)

Responses HTTP 200 status code if successful

 HTTP 400 status code if no SLAI ID is provided.

 HTTP 404 status code if no SLAI exists with this id OR an empty output had yielded.

 HTTP 500 if the JSON structure of the list failed to be constructed

Parameters Name URL pattern Success Response Model
id*

?id={slai_id }

{
 "_id" : {SLAI_id},
 "LEARNER_ID" : {LEARNER_id},
 "SLA_ID" : {SLA_id},
 "SLAI_WEIGHT" : "{∊[0,1]}",
 "SLA_NAME" : "{SLA_name}",
 "LAST_MODIFIED" : {isodate},
 "CREATED" : {isodate }
}

Table 11: SLA Open API - GET api/sla/getSLAI

URL pattern GET api/sla/getSLAIs/rtm

Method GET

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 34 of 41

Content
type

Application/JSON

Description Return the list of all personal runtime SLA instances in the MaTHiSiS repository. If a
learner id is defined, return the list of all runtime SLAIs that this learner has worked
on. If a SLAI id is defined, return the list of all runtime SLAIs pertaining to this SLAI. If a
session id is defined, return the list of all runtime SLAIs created during that session.

Responses HTTP 200 status code if successful

 HTTP 500 if the JSON structure of the list failed to be constructed

Parameters Name URL pattern Success Response Model
uid
slaiid
sid

?uid={learner_id}
&slaiid={slai_id}
&sid={session_id}

{
 "learner_id" : {learner_id},
 "slas": [
 {
 "session_id" : {session_id},
 "slai_rtm_id": {slai_rtm_id},
 "slai_id": {slai_id},
 "sla_name": {sla_name},
 },
 ...
]
}

Table 12: SLA Open API - GET api/sla/getSLAIs/rtm

URL pattern GET api/sla/getSLAI/rtm

Method GET

Content
type

Application/JSON

Description Return a personal runtime record of an SLAI for a particular learner, given the SLAI id
(and optionally, name as cross-reference)

Responses HTTP 200 status code if successful

 HTTP 400 status code if no runtime SLAI ID is provided.

 HTTP 404 status code if no runtime SLAI exists with this id OR an empty output had
yielded.

 HTTP 500 if the JSON structure of the list failed to be constructed

Parameters Name URL pattern Success Response Model

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 35 of 41

id*

?id={slai_id }

{
 "_id" : {SLAI_rtm_id},
 "LEARNER_ID" : {LEARNER_id},
 "SLAI_ID" : {SLAI_id},
 "SLA_ID" : {SLA_id},
 "SLAI_WEIGHT" : {s∊[0.0,1.0]},
 "SLA_NAME" : "{SLA_name}",
 "SESSION_ID" : {SESSION_id},
 "LAST_MODIFIED" : {isodate},
 "CREATED" : {isodate}
}

Table 13: SLA Open API - GET api/sla/getSLAI/rtm

URL pattern POST api/sla/postSLA

Method POST

Content
type

Application/JSON

Description Create an unpersonalised SLA on the MaTHiSiS DB under the lcsSmartLearningAtom
collection. Automatically detects SLA id from input structure. Missing non-mandatory
fields of the input model are automatically filled in with default/initial values.

Responses HTTP 200 status code if successful

 HTTP 400 status code if the input JSON structure is wrong OR no input was provided
OR the input structure was not correct OR the SLA already exists.

 HTTP 404 status code if a creation error failed to insert the structure in the DB.
 HTTP 500 if the JSON structure of the list failed to be constructed

Parameters Name URL pattern Input Model
(*)Marks mandatory fields for the input to be
accepted

-

-

{
 "_id":{SLA_id},
 "SLA_DESCR" : "{SLA description}",
 *"SLA_NAME" : "{SLA_name}",
 *"LEARNING_ACTIONS" : [
 {
 "LA_NAME" : "{LA_name}",
 "_id" : {LA_id},
 "RELATION_DEGREE" : "1.0"
 },
 ….
],
 "LAST_MODIFIED" : {isodate},
 "CREATED" : {isodate},
 *"CREATOR_ID" : {tutor_id}
}

Table 14: SLA Open API - POST api/sla/postSLA

URL pattern POST api/sla/postSLAI

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 36 of 41

Method POST

Content
type

Application/JSON

Description Create a personalised SLA instance for a given learner on the MaTHiSiS DB under the
usSmartLearningAtomInstance collection. Automatically detects SLAI id from input
structure. Missing non-mandatory fields of the input model are filled in with
default/initial values.

Responses HTTP 200 status code if successful

 HTTP 400 status code if the input JSON structure is wrong OR no input was provided
OR the input structure was not correct OR the SLAI already exists.

 HTTP 404 status code if a creation error failed to insert the structure in the DB.

 HTTP 500 if the JSON structure of the list failed to be constructed

Parameters Name URL pattern Input Model
(*)Marks mandatory fields for the input to be
accepted

-

-

{
 "_id" : {SLAI_id},
 *"LEARNER_ID" : {LEARNER_id},
 *"SLA_ID" : {SLA_id},
 "SLAI_WEIGHT" : "{∊[0.0,1.0]}",
 *"SLA_NAME" : "{SLA_name}",
 "LAST_MODIFIED" : {isodate},
 "CREATED" : {isodate}
}

Table 15: SLA Open API - POST api/sla/postSLAI

URL pattern POST api/sla/postSLAI/rtm

Method POST

Content
type

Application/JSON

Description This call is evoked solely from the SLA lib and LG lib. Create a personalised runtime SLA
instance record for a given learner and session on the MaTHiSiS DB under the
usSmartLearningAtomInstance_rtm collection. Automatically detects SLAI id from
input structure. Automatically produces the SLAI runtime id and inserts the session id
to the serialisation of the SLAI_rtm on the MaTHiSiS DB. The ‘type’ parameter defines
which process has updated the weight; accepted fields are CREATION or RESET or
DSS_PERSONALIZATION or DSS_ADAPTATION or LGE_PERSONALIZATION or
LGE_ADAPTATION.

Responses HTTP 200 status code if successful

 HTTP 400 status code if the input JSON structure is wrong OR no input was provided
OR the input structure was not correct.

 HTTP 404 status code if a creation error failed to insert the structure in the DB.

 HTTP 500 if the JSON structure of the list failed to be constructed

Parameters Name URL pattern Input Model

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 37 of 41

(*)Marks mandatory fields for the input to be
accepted

sid
type

?sid={session_id}
&type="{CREATION/RESET/DSS_
PERSONALIZATION/DSS_ADAPTA
TION/
LGE_PERSONALIZATION/LGE_AD
APTATION}"

{
 "_id" : {SLAI_id},
 *"LEARNER_ID" : {LEARNER_id},
 *"SESSION_ID" : {SESSION_id},
 *"SLA_ID" : {SLA_id},
 *"SLAI_WEIGHT" : "{ ∊[0.0,1.0]}",
 *"SLA_NAME" : "{SLA_name}",
 "LAST_MODIFIED" : {isodate},
 "CREATED" : {isodate}
}

Table 16: SLA Open API - POST api/sla/postSLAI/rtm

URL pattern POST api/sla/updateSLAIweight

Method POST

Content
type

Application/JSON

Description Update the weight of a given personalised SLA instance for a given learner without
having to repost the entire SLAI structure. Not applicable to runtime SLAIs. The ‘type’
parameter defines which process has updated the weight; accepted fields are
CREATION or RESET or DSS_PERSONALIZATION or DSS_ADAPTATION or
LGE_PERSONALIZATION or LGE_ADAPTATION

Responses HTTP 200 status code if successful

 HTTP 400 status code if no SLAI ID is provided OR no session id is provided.
Parameters Name URL pattern Input Model

id*
sid*
uid
type

?id={slai_id}
&sid={session_id}
&uid={learner_id}
&type="{CREATION/RESET/DSS_
PERSONALIZATION/DSS_ADAPTA
TION/
LGE_PERSONALIZATION/LGE_AD
APTATION}"

A String representation of a double
∊[0.0,1.0]

Table 17: SLA Open API - POST api/sla/updateSLAIweight

URL pattern PUT api/sla/putSLA
Method PUT

Content
type

Application/JSON

Description Create or update an unpersonalised SLA on the MaTHiSiS DB under the
lcsSmartLearningAtom collection. Automatically detects SLA id from input structure. If
the SLA with the provided id doesn’t already exist in the DB it creates a new entry,

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 38 of 41

otherwise it updates the fields of the existing retrieved entry. Missing non-mandatory
fields of the input model are automatically filled in with default/initial values.

Responses HTTP 200 status code if successful

 HTTP 400 status code if the input JSON structure is wrong OR no input was provided
OR the input structure was not correct.

 HTTP 404 status code if a creation error failed to insert the structure in the DB.

 HTTP 500 if the JSON structure of the list failed to be constructed

Parameters Name URL pattern Input Model
(*)Marks mandatory fields for the input to be
accepted

-

-

{
 "_id": {SLA_id},
 "SLA_DESCR" : "{SLA description}",
 *"SLA_NAME" : "{SLA_name}",
 *"LEARNING_ACTIONS" : [
 {
 "LA_NAME" : "{LA_name}",
 "_id" : {LA_id},
 "RELATION_DEGREE" : "1.0"
 },
 ….
],
 "LAST_MODIFIED" : {isodate},
 "CREATED" : {isodate},
 *"CREATOR_ID" : {tutor_id}
}

Table 18: SLA Open API - PUT api/sla/putSLA

URL pattern PUT api/sla/putSLAI
Method PUT
Content
type

Application/JSON

Description Create a personalised SLA instance for a given learner on the MaTHiSiS DB under the
usSmartLearningAtomInstance collection. Automatically detects SLAI id from input
structure. If the SLAI with the provided id doesn’t already exist in the DB it creates a
new entry, otherwise it updates the fields of the existing retrieved entry. Missing non-
mandatory fields of the input model are filled in with default/initial values.

Responses HTTP 200 status code if successful

 HTTP 400 status code if the input JSON structure is wrong OR no input was provided
OR the input structure was not correct.

 HTTP 404 status code if a creation error failed to insert the structure in the DB.

 HTTP 500 if the JSON structure of the list failed to be constructed

Parameters Name URL pattern Input Model
(*)Marks mandatory fields for the input to be
accepted

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 39 of 41

-

-

{
 "_id" : {SLAI_id},
 *"LEARNER_ID" : {LEARNER_id},
 *"SLA_ID" : {SLA_id},
 "SLAI_WEIGHT" : "{∊[0.0,1.0]}",
 *"SLA_NAME" : "{SLA_name}",
 "LAST_MODIFIED" : {isodate},
 "CREATED" : {isodate}
}

Table 19: SLA Open API - PUT api/sla/putSLAI

URL pattern DELETE api/sla/deleteSLAs

Method DELETE

Description Delete (drop) all SLAs under the lcsSmartLearningAtom collection in the MaTHiSiS DB
Responses HTTP 200 status code if successful

Parameters Name URL pattern
- -

Table 20: SLA Open API - DELETE api/sla/deleteSLAs

URL pattern DELETE api/sla/deleteSLAIs

Method DELETE

Description Delete (drop) all SLAIs under the usSmartLearningAtomInstance collection in the
MaTHiSiS DB. If a learner id is defined, delete only the SLAIs that this learner has
worked on. If a SLA id is defined, delete only the SLAIs instantiating this SLA.

Responses HTTP 200 status code if successful

Parameters Name URL pattern
uid
slaid

?uid={learner_id}
&slaid={sla_id}

Table 21: SLA Open API - DELETE api/sla/deleteSLAIs

URL pattern DELETE api/sla/deleteSLAIs/rtm

Method DELETE

Description Delete (drop) all runtime SLAIs under the usSmartLearningAtomInstance_rtm
collection in the MaTHiSiS DB. If a learner id is defined, delete only the SLAIs that this
learner has worked on. If a SLAI id is defined, delete only the runtime SLAIs pertaining
to this SLAI. If a session id is defined, delete only the runtime SLAIs created during
that session.

Responses HTTP 200 status code if successful

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 40 of 41

Parameters Name URL pattern
uid
slaid
sid

?uid={learner_id}
&slaid={slaii_id}
&sid={session_id}

Table 22: SLA Open API - DELETE api/sla/deleteSLAIs/rtm

URL pattern DELETE api/sla/deleteSLA

Method DELETE

Description Delete (drop) a specific SLA in the lcsSmartLearningAtom collection in the MaTHiSiS
DB

Responses HTTP 200 status code if successful

 HTTP 400 status code if no SLA ID was provided

Parameters Name URL pattern
id ?id={sla_id}

Table 23: SLA Open API - DELETE api/sla/deleteSLA

URL pattern DELETE api/sla/deleteSLAI

Method DELETE

Description Delete (drop) a specific SLAI in the usSmartLearningAtomInstance collection in the
MaTHiSiS DB.

Responses HTTP 200 status code if successful

 HTTP 400 status code if no SLAI ID was provided

Parameters Name URL pattern
id ?id={slai_id}

Table 24: SLA Open API - DELETE api/sla/deleteSLAI

URL pattern DELETE api/sla/deleteSLAI/rtm

Method DELETE

Description Delete (drop) a specific runtime SLAIs in the usSmartLearningAtomInstance_rtm
collection in the MaTHiSiS DB.

Responses HTTP 200 status code if successful

 HTTP 400 status code if no runtime SLAI ID was provided

Parameters Name URL pattern

D3.2 – The MaTHiSiS Smart Learning Atoms

Contract No.: 687772

Page 41 of 41

id ?id={slai_rtm_id}

Table 25: SLA Open API - DELETE api/sla/deleteSLAI/rtm

	Document History
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Project Description
	Executive Summary
	1. Introduction
	2. Smart Learning Atoms
	2.1 Objectives and definitions
	2.2 Methodology and dependencies
	2.3 Smart Learning Atoms educational attributes: concrete examples
	2.3.1 Atomicity & self-sustainability
	2.3.2 Re-usability
	2.3.3 Individuality
	2.3.4 Non-linearity

	3. Smart Learning Atom library implementation details
	3.1 Functionalities
	3.2 Open API
	3.3 Interface with the Front-end
	3.3.1 SLAs in the Learning Content Editor
	3.3.1.1 SLA Editor
	3.3.1.2 LG Editor

	4. Conclusion
	5. References
	6. Appendix I: SLA Data Structures
	7. Appendix I: SLA lib Open API documentation

